

MATERIALS, APPLICATIONS AND PROPERTIES

FRIALIT[®]-DEGUSSIT[®] High-Performance Ceramics

www.kyocera-solutions.de

MATERIALS AND APPLICATIONS

Material	KYOCERA Trade Name	Description	Typical Applications
	FRIALIT F99.7	Pure Al ₂ O ₃ , dense, extremely resistant to wear and corrosion, very high electrical insulating properties	Matched piston/cylinder units, bearings, shafts and valve components, electrical feedthroughs, brazed ceramic to metal seals for x-ray- technology and ionic accelarators for medical technology, dielectrics for fuel cells, sensor caps
	DEGUSSIT DD57	Pure Al ₂ O ₃ , dense, red colour, wear resistant and tough, also called "sintered ruby"	Fine grinding tools for finishing hard materials for precision engineering, knife sharpener
Al ₂ O ₃ Aluminium Oxide	DEGUSSIT AL23	Pure Al ₂ O ₃ , dense, excellent thermal and electrical resistance properties, corrosion resistant, permeable for microwaves	Protection tubes for thermocouples, furnace construction parts, laboratory ware e.g. crucibles, boats and plates, reactor lining in the chemical industry, microwave-technology
	DEGUSSIT AL24	Pure Al ₂ O ₃ , slightly porous, good resistance to thermal shock, extremely good creep strength	Tubes, laboratory ware, furnace construction parts
	DEGUSSIT AL25	Pure Al ₂ O ₃ , very porous, good thermal insulation, highest resistance to thermal shock of all the Al ₂ O ₃ materials	Tubes, laboratory ware, furnace construction parts
Al ₂ O ₃ (+ZrO ₂) Aluminium Oxide, fine grain stabilized	FRIALIT FZT	AI_2O_3 toughened with ZrO_2 , dense, high strength, good resistance to thermal shock, extremely resistant to wear and corrosion, fine grain size	Vacuum plates for paper-making, flow meter tubes for chemical industry, positioning pins for automotive industry

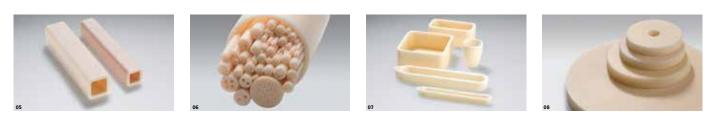
Material	KYOCERA Trade Name	Description	Typical Applications	
ZrO ₂ Zirconium Oxide	FRIALIT FZM	ZrO ₂ partially stabilized with MgO, dense, high strength and highly wear resistant, extremely resistant to corrosion and thermal shock	High pressure pistons, pressing dies, compo- nents for mills, ceramic isolation shells for ma- gnetic drive centrifugal pumps, metal forming tools	
	DEGUSSIT FZY	Partially stabilized with Y ₂ O ₃ , dense, high purity ZrO ₂ , high temperature and corrosion resistance, ion conducting for measuring oxygen	Crucibles, heat-treatment bowls, oxygen measurement	
	FRIALIT FZM/K	Tetragonally stabilized with Y ₂ O ₃ , dense, very fine grain size, highest breaking strength and wear resistance	Cutting elements, wear protection plates	
SiC Silicon Carbide	FRIALIT SiC 198D	SSiC, highly wear resistant, good corrosion resistance, excellent sliding properties	Slide rings, bearings, slide bushings, axial sleeves	
Si ₃ N ₄ Silicon Nitride	FRIALIT HP 79	High purity Silicon Nitride, high wear resistance, excellent bending strength, highest thermal shock resistance	Metal forming tools, rollers, plates	

MATERIALS AND PROPERTIES

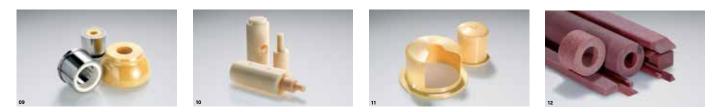
Material		Al ₂ O ₃ Aluminium Oxide					
KYOCERA Trade Name		FRIALIT F99.7	DEGUSSIT DD57	DEGUSSIT AL23	DEGUSSIT AL24	DEGUSSIT AL25	FRIALIT FZT
Properties of Microstructure							
Apparent Density	g/cm³	≥ 3.90	≥ 3.90	3.70 - 3.95	> 3.40	> 2.80	≥ 4.10
Open Porosity	%	0	0	0	≤ 5	20 - 30	0
Mean Grain Size	μm	10	10	10	40	70	5
Mechanical Properties 20 °C							
Hardness (HV 1)	-	1 760	1 660	1 740	-	-	1 880
Compressive Strength	N/mm² (MPa)	3 500	3 000	3 500	1 000	300	3 000
Bending Strength	N/mm² (MPa)	350	300	300	150	70	460
Modulus of Elasticity	GPa	380	380	380	-	-	360
Thermal Properties							
Maximum Operating Temperature	°C	1 950	1 950	1 950	1 950	1 950	1 700
Specific Heat 20 °C	J/(kg*K)	900	900	900	-	-	900
Thermal Conductivity 100 °C	W/(m*K)	30	30	30	-	-	25
Expansion Coefficient 20 - 1000 °C	10 ⁻⁶ /K	8.5	8.5	8.2	8.2	8.2	8.3
Electrical Properties							
Specific Resistance 20 °C	Ω∙cm	10 ¹⁵	-	10 ¹⁴	-	-	-
Specific Resictance 500 °C	Ω•cm	1011	-	10 ¹⁰	-	-	-
Specific Resistance 1000 °C	Ω∙cm	10 ⁷	-	10 ⁷	-	-	-
Typical Colour		ivory	red	ivory	cream white	white	white

The data indicated on this table are in line with the introductory German Industrial Standard DIN 60672-2 and relate to test specimens from which they were obtained. They are not unconditionally applicable to other forms of the same material. The data must be regarded as indicative only. All data refer to a temperature of 20°C, unless otherwise specified.

To find information about characteristic values of other materials, please go to www.kyocera-solutions.de.


Material	ZrO ₂ Zirconium Oxide			
KYOCERA Trade Name		FRIALIT FZM	DEGUSSIT FZY	FRIALIT FZM/K
Properties of Microstructure				
Apparent Density	g/cm³	≥ 5.70	≥ 5.60	≥6,0
Open Porosity	%	0	0	0
Mean Grain Size	μm	50	30	0.8
Mechanical Properties 20 °C				
Hardness (HV 1)	-	1 220	1 400	1 420
Compressive Strength	N/mm² (MPa)	2 000	2 000	2 200
Bending Strength	N/mm² (MPa)	500	400	1 000
Modulus of Elasticity	GPa	185	200	200
Thermal Properties				
Maximum Operating Temperature	°C	900	1 700	1 000
Specific Heat 20 °C	J/(kg*K)	400	400	400
Thermal Conductivity 100 °C	W/(m*K)	2.5	2.5	2.5
Expansion Coefficient 20 - 1000 °C	10 ⁻⁶ /K	11.1	10.9	10.5
Electrical Properties				
Specific Resistance 20 °C	Ω∙cm	10 ¹⁰	10 ¹⁰	10 ¹⁰
Specific Resictance 500 °C	Ω•cm	104	5 * 10 ³	10 ²
Specific Resistance 1000 °C	Ω•cm	25	15	15
Typical Colour		yellow	white	white

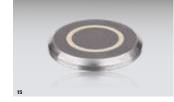
FRIALIT®-DEGUSSIT® HIGH-PERFORMANCE CERAMICS


ELECTRICAL ENGINEERING

HIGH TEMPERATURE TECHNOLOGY

MECHANICAL ENGINEERING

SENSOR AND MEASURING TECHNOLOGY



01. UHV vacuum chamber 02. Special insulation tube for physical 02. research institutes 03. Feedthroughs with ISO-KF flange

04. High-voltage feedthrough

05. Rectangular tubes 06. Multi-bore tubes 07. Crucibles, boats and annealing 06. boxes 08. Plates with hole

09. Forming tools used in body construction 10. Dosing unit used in the pharma-

ceutical and cosmetic industry 11. Containment shells for the pump industry

12. Grinding tools used in metal processing

13. Pressure sensor for aerospace

14. Flow meters 15. Humidity sensor

- 16. Oxygen sensor

INNOVATIVE SOLUTIONS FOR THE GLOBAL MARKET

INNOVATIONS FOR MORE THAN 150 YEARS

With more than 150 years of experience in ceramic manufacturing, we offer a range of innovative solutions for many industries: system components for high technology applications in electrical and sensor technology, mechanical engineering, analytical technology, medical and semiconductor technology as well as laboratory technology. In the field of ceramic-to-metal assemblies we possess international leading know-how.

SPECTRUM OF INNOVATIVE SOLUTIONS

We see ourselves as a partner in the development of high-performance ceramic solutions, which give our customers added value and ensure their technological advantages. Our team advise comprehensive on the selection of ceramic materials, product design and project execution - from the development stage over the prototype fabrication to the serial.

PARTNER OF A POWERFUL COMMUNITY

Founded in 1863 in Mannheim as brickyard, known as "Deutsche Steinzeug" and later as "Friedrichsfeld GmbH", the business area Ceramics continued its successful development. Since September 2019, we are part of the KYOCERA Corporation, a world-leading ceramic and technology company.

KYOCERA Fineceramics Solutions GmbH is a specialist company for products made of non-corroding and wear-resistant materials.

KYOCERA Fineceramics Solutions GmbH

Steinzeugstraße 92 68229 Mannheim / Germany Tel.: +49 (0) 621 - 405 47 400 E-Mail: info@kyocera-solutions.de www.kyocera-solutions.de

European Headquarters:

KYOCERA Europe GmbH

Fritz-Mueller-Strasse 27 73730 Esslingen / Germany Tel.: +49 (0)711 - 93 93 4-0 E-Mail: info.fc@kyocera.de www.kyocera.eu

ITALBRAS SPA Strada del Balsego, 6 36100 Vicenza / Italy Tel: +39 0444 347559 E-Mail: info@italbras.it www.italbras.it